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ABSTRACT 
 
 Computational science applications and advanced 
scientific computing have made tremendous gains in the 
past decade.  Researchers are regularly employing the 
power of large computing systems and parallel 
processing to tackle larger and more complex problems 
in all of the physical sciences.  For the past decade or so, 
most of this growth in computing power has been “free” 
with increased efficiency more-or-less governed by 
Moore’s Law.  However, increases in performance are 
becoming harder to achieve due to the complexity of the 
parallel computing platforms and the software required 
for these systems.  Reconfigurable computing, or 
heterogeneous computing, is offering some hope to the 
scientific computing community as a means to continued 
growth in computing capability.  This paper offers a 
glimpse of the hardware and software associated with 
this new technology and discusses how the new 
paradigm functions for computational science.  

1. INTRODUCTION 
 

The term High Performance Computing (HPC) has 
different meanings to different people.  At the least, it 
should denote a sense of “attention to detail” with a 
focus on squeezing as much performance as possible 
from a computer to maximize some metric. These 
metrics can also be a bit soft in definition; they could be 
a reduced wall-clock time to solution or optimizing 
arithmetic operations to boost floating-point calculations 
per second.   

Furthermore, a concern for code execution speed 
implies an interest in parallel computing; “The most 
powerful computer at any given time must, by definition, 
be a parallel machine” (Carriero, 1992).  This parallelism 
can be overt as in packing as many distinct processing 
elements into a chassis as possible and tying them 
together using a fast interconnect.  Overt parallelism is 
usually leveraged in one of two ways.  First, task 
parallelism allows some complex task to be split and 
executed concurrently on several processors at once.  
Second, data parallelism represents cases where the 
operation to be applied is fairly straightforward but the 

data sets can be huge.  Parallelism here takes advantage of 
spreading these large data sets over numerous processors. 

Parallelism can also be covert and happening at the 
“atomistic” level of the Central Processing Unit (CPUs) 
through instruction-level parallelism.  Many of today’s 
CPUs have the capacity to perform instruction level 
parallelism by issuing several low-level instructions at 
each clock cycle.  Capitalizing on this capability is usually 
within the purview of the compilers that translate high-
level languages like “C” to assembly-level code.  The 
results can be dramatic depending on the depth of the 
pipeline that forms. 

HPC and parallelism become one concept denoting an 
attempt to maximize the potential for computer-based 
solutions.  However, how does HPC relate to the 
applications under consideration?   While HPC and 
parallelism have obvious utility to industry, and as we will 
see have been unknowingly tied to the scientific world, the 
focus here is on computer applications to research fields.  
To denote this marriage of research application along with 
parallelism and HPC as the enabling technologies, the term 
“computational science” is often used.  The term, also 
commonly encountered as “scientific computing,” is a 
catch-all for the process of developing mathematical and 
numerical approaches to address any number of fields, 
including astronomy, biology, structural mechanics, nano-
science, and electromagnetism, that attempt to apply and 
use computers to address these problems and run these 
models. 

Computational science has evolved and grown 
considerably over the past decade or so.  Today, several 
universities offer programs of study and degrees in the 
field.  In the DOD, the High Performance Computing 
Modernization Program (HPCMP) has been in existence 
since 1992 and now has ten recognized Computational 
Technology Areas (CTAs) that are supported.  Most 
researchers in these areas, such as computational structural 
mechanics and computational fluid dynamics, use the 
computing hardware supplied by the HPCMP and would 
classify themselves by their native training and also as 
computational scientists. 

While history is on the side of scientific computing, 
there is a growing awareness that the future is a bit 
uncertain and potentially bleak.  Future growth and 
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scalability into the realm of petaflop computing with 
traditional computing architectures is looking more-and-
more impossible if the focus remains on using traditional 
computing architectures and software development 
paradigms.  While computers have grown larger and 
larger, the ability to achieve anything close to theoretical 
peak speeds has plunged.  Software engineering proves 
to be very difficult as the requirements to maintain 
portability and efficiency coexist with the overall 
requirement to map to complex architectures. 

While current scalability will no doubt continue for 
some time, we are quickly reaching the point of 
diminishing returns for current practice.  The reasons 
behind this are vast and will be explored in the following 
sections.  However, there is hope to be found in a new 
concept known as reconfigurable computing.  This new 
approach attempts to leverage on reprogrammable 
hardware.  Numerous challenges remain in this new 
technology, but it is rapidly maturing and provides great 
potential to the scientific computing field.   

2. THE STATE OF HPC 
 
While quantum or biological computing remain 

interesting research areas in theoretical computing, 
current technology is founded in binary computing.  
These parallel computing platforms have certainly grown 
in size and changed considerably over time.  This is 
highlighted in the Top 500 list.  Since 1993, this list has 
been compiled and maintained by a group of industrial 
and academic teams.  This list reveals several striking 
trends.  First, there has been a dramatic shift from vector 
to scalar computing.  As of June 2006, only 1.6% of the 
list is comprised of vector computers with 98.4% being 
scalar processors (Top 500).  Second, there has been a 
distinct move toward cluster architectures due largely to 
the ability of centers to procure large-scale systems at a 
perceived very high performance-to-price ratio.  Finally, 
Intel-based architectures running the Linux operating 
system had grown to account for over 60% of the 
systems on the Top 500 list by 2004.  This represents 
stunning growth where as recently as 2000 these 
architectures accounted for essentially no representation 
on the list. 

These changes have been dramatic and at no small 
cost to the user community.  Software developers for 
these systems continue to struggle to develop code that is 
portable but often has to take into account the underlying 
architecture of the system.  While high-level languages 
are designed to remove some of these constrains with the 
compiler translating the algorithm to the lowest machine 
languages, power-users would still often dive into low-
level optimizations specifically tailored to the host 
CPUs.  The processor and memory interconnects, 
whether they be shared memory, distributed shared 
memory, or distributed memory, remained important 
points of consideration as they could dictate the 

appropriate choice of parallel programming that would 
best fit the situation. 

In this regard, several parallel programming 
paradigms exist today to facilitate use of these systems; 
and more continue to surface.  Historically, most of these 
approaches have involved the use of libraries called from 
other languages (such as the tuple approach found in 
Linda), pragmas added to languages (such as found in 
OpenMP), and outright parallel programming languages 
(such as High Performance Fortran [HPF]).  The current 
standard is the Message-Passing Interface (MPI) that uses 
the library approach to parallelism.  Hooks are provided 
for numerous languages including the various flavors of 
Fortran, C, and C++.  Other languages such as Unified 
Parallel C (UPC) and Co-Array Fortran (CAF) are getting 
some attention but remain immature. 

Gauging the level of success of codes on HPC 
platforms is highly subjective.  Many codes in fields such 
as signal and image processing are embarrassingly parallel 
and will routinely operate at over 70% efficiency and scale 
almost linearly.  Other software, such as codes based on 
unstructured grids, will be lucky to achieve even 10% of 
peak performance due to constant pointer chasing on the 
references to grid points.  Regardless, any decrease in 
overall execution time provides the opportunity for more 
runs or a faster time to solution; both considered wins for 
any researcher. 

3. BARRIERS TO CONTINUED GROWTH 
 
HPC remains a continually evolving field; its final 

state is yet unknown.  Machines with thousands of 
processors are now common and more affordable due to 
the focus on clustered commodity processors.  What is 
quickly becoming apparent is that limiting factors in both 
market and physical design are converging that will limit 
the performance of these systems in the future.  Problem 
areas can be classified in terms of hardware and software. 

 
3.1 Hardware 

 
As indicated, hardware advances over the past several 

decades have been empirically observed with remarkable 
precision to obey Moore’s Law that predicts an advance in 
scalar performance by about a factor of two every eighteen 
months.  Maintaining this rate has become problematic as 
power dissipation and other size-limiting factors become 
more pronounced at smaller feature size. 

Chip designers also continue to struggle with the 
bottlenecks inherent when accessing off-chip main 
memory.  The costly addition of multi-tiered cache 
systems has helped alleviate some of this access penalty, 
but the requisite computer cycles to access deeper caches 
has also increased accordingly.  The last key limiting 
factor is the sustained performance achievable from 
clusters with massive numbers of commodity processors.  
The complex mix of memory bandwidth, interconnection 



latencies, and general algorithm scheduling at the 
compiler/processor level are all limiting factors. 

 
3.2 Software 
 
 The challenges at producing viable code for faster 
and more complex architectures are just as daunting, if 
not more, than those found in the hardware design.  The 
difficulties run the range from job scheduling, task or 
domain decomposition, load balancing, and management 
of unwieldy data sets. Software engineering has become 
a much more time-consuming task for the computational 
scientist.   

It is a relatively safe assumption to say that as the 
number of processors and the complexity of the 
computing architectures increase, this problem will only 
get worse.  While the MPI model of parallelism has 
mapped fairly well to the computers fielded to date, there 
is no certainty that this will remain the case in out years.  
Partly because of this, several vendors are already 
reaching out into new languages such as Chapel and X10 
to target the advanced hardware being designed for peta 
flop-scale computing (HPCWire, 2006). 

There really is little reason to hope that these new 
approaches will represent a breakthrough in software 
engineering for these systems.  While they may more 
readily map to peta-scale architectures, the users of these 
languages will undoubtedly be exposed to the same 
difficulties experienced while developing or porting 
codes to a new language.  It has been noted that 
successful HPC software development projects routinely 
require a time span of about a decade (Post, 2004).  
Focus on continually emerging and developing 
languages in HPC software engineering significantly 
raises the level of risk in a project.  It can render a 
project irrelevant in the worst case with either the 
computer or software being outdated at the time of the 
first software beta test. 

 
3.3 Capacity versus capability 

 
While generally unbeknownst to the computational 

scientist, for much of the last 20 years the interests of the 
HPC users and those of the general-purpose commodity 
market have been aligned resulting in consistent, reliable 
improvement in the field.  During this time, the HPC 
community has had a relatively free ride on Moore’s 
Law that has led commodity solutions to dominate the 
HPC market.  In some ways this has been very good to 
the HPC market.  There is an excellent performance-to-
price ratio and skill sets common in the computer market 
can be applied to HPC.   

However, there are some serious cracks that are 
starting to become visible in this reality.  As stated, there 
is a low sustained performance rate with HPC systems at 
roughly 10% of overall peak speeds.  There is less and 
less motivation for chip vendors to provide massive 

floating-point support and performance.  Doing so further 
complicates chip design and sacrifices other functionality 
more important to commodity chips.  Furthermore, 
programming models widely accepted for the general 
community may not translate well to the HPC world.  A 
common example of this is the heavy use of pointers in the 
C language.  Pointer aliasing difficulties in compiling this 
type of code often leads to sub-optimal performance on 
large-scale systems since the compiler cannot make any 
assumptions as to the parallelizability of loops containing 
these structures.   

So, the current state of HPC looks good at first glance.  
There is tremendous computing capacity.  However, there 
is a widening gap in terms of capability.  The gap is getting 
wider by the day as newer approaches in hardware, such as 
the multi-core chip, make their appearance on the market.  
While the capacity is growing, the capability (as found in 
the software) is still lacking.  Suggestions on how best to 
handle the new reality focus largely on traditional software 
engineering practices to lessen the risk of new hardware 
insertion and extend application lifecycles (Meyer, 2006).  
While this is sound advice, it is not particularly reassuring. 

Within the wider commercial computing industry, 
there was often a dichotomy; either you were interested 
more in hardware design or you were more interested in 
software engineering.  For computational scientists, the 
two camps are rather like a pendulum swinging from one 
extreme to the other.  Early computing focused on explicit 
algorithm design for single-purpose computers.  Assembly 
language coding was far more interested in underlying 
hardware design.  With the advent of compiler technology 
in the 1950’s more attention was being placed on software 
development in high-level languages to allow for ease of 
programming, portability, and software longevity (Aho, 
1987).  The compiler would now be responsible for 
mapping to the low-level instructions of the CPU.   

The reality, however, is that all computational 
scientists seek an ideal solution from both perspectives.  
The use of commodity chips has certainly not relieved the 
field from a required attention to underlying details.  From 
the hardware side, most code profiling and optimization 
efforts require a vast array of knowledge about the 
underlying chipsets to fully optimize code.  For example, 
with superscalar architectures (those that can issue 
multiple low-level instructions per cycle), only through 
detailed analysis of the assembly code can one determine 
how well the instruction scheduler of a compiler has done.  
Often source code changes may be required if a failure to 
fully pipeline code has occurred.  From the software side, 
an attempt to realize the full potential of development 
approaches such as object-oriented design is also not 
deterring the community from investigating the use of 
languages such as C++, for example. 

A promising approach to push HPC to the next level is 
found by paying attention to both hardware and software in 
a unified way.  Reconfigurable computing blends custom 
hardware design with high-level language approaches to 



see the process as one unified endeavor.  This is a 
fundamentally different way of viewing HPC that 
certainly requires more work, but the potential reward is 
considerable. 

4. RECONFIGURABLE COMPUTING FOR HPC 
 

As discussed, the dependence on increased clock speed 
and increased number of processors to allow for 
continued growth in the field of computational science is 
now in jeopardy.  However, reconfigurable computing is 
a rapidly maturing field that offers great hope for 
meeting the demanding requirements of computational 
scientists.  A quick definition is in order. 

“Reconfigurable computing is computer 
processing with highly flexible computing 
fabrics. The principal difference when 
compared to using ordinary microprocessors is 
the ability to make substantial changes to the 
data path itself in addition to the control flow.” 
(Wikipedia, 2006) 
Of course, these lofty descriptions have to find their 

way into actual practical use.  This section discusses the 
hardware that is being used to realize these goals.  The 
technology has been in existence for some time, but has 
matured to the point of being useful for the HPC 
community.  We conclude this section by discussing the 
programming methodology for these systems and the 
complexity involved.  

 
4.1 Hardware 
 

Reconfigurable computing has its foundation in 
commodity-based hardware that gives HPC algorithm 
designers direct access to digital circuits designed 
specifically to address their problems.  Custom-designed 
circuits present the highest performance approach 
possible for today’s binary computer systems.  One way 
to build such a circuit in reusable hardware is through the 
use of Field Programmable Gate Array (FPGA) devices.   

FPGAs provide a general-purpose programming 
device that is completely customizable by the end-user.  
An FPGA is usually supplied as a stand-alone board or 
as a component that can be plugged into a server.  These 
connections are usually done though a PCI or PCI-X card 
slot.  Connections using PCI-Express are just coming on-
line.  Two manufacturers, Xilinx and Altera, have the 
main market on the FPGAs themselves.  The actual 
FPGA can come in a wide variety of sizes with different 
internal and external interfaces. 

These boards come in a wide variety of designs that 
are customizable based on the desired functionality of 
the board.  Many can also be expanded by modules.  
Boards are available with different configurations and 
types of memory.  Boards may also incorporate 
processors coupled with the FPGA for certain types of 
process load-sharing.   

Figure 1 shows a simple FPGA training board that 
connects through serial ports to a host computer.  The 
board has LEDs and several switches and buttons that can 
be polled by the interface libraries to code running on the 
server.  The actual FPGA on the board is a Xilinx Spartan. 

 

 
 

Figure 1: A sample FPGA training board. 
 

Any digital function can be mapped to a FPGA but 
they have historically showed a preference for integer- and 
bit-based operations.  This is mainly due to the limited size 
of the fabric, but this is changing.  The basic component of 
a FPGA is a static RAM and a connection framework.  
These devices roughly track the speed of SRAM 
technology with clock speeds currently up to 500 MHz 
(Fernando, 2006).  Floating-point operations and library 
functions (such as the fast Fourier transform [FFT]) can 
take a large portion of the switching fabric to implement.   

An algorithm is encoded as a digital design and 
mapped to a switching fabric made up of logic cells.  
FPGAs are designed to emulate integrated circuits.  If an 
algorithm is “synthesizable” and burned on a chip, it can 
also be “simulated” in an FPGA.  Figure 2 is a simplistic 
graphical depiction of connected gates that are formed 
after an algorithm is placed on a FGPA.   

 

 
Figure 2: A graphical representation of mapping digital 

circuit descriptions to FPGA fabric. 
 

While the outlook for traditional CPUs into the future 
is a bit uncertain, the converse is true for FPGAs.  
DeHon’s Law is the analog of Moore’s Law that governs 
performance on reconfigurable chips (DeHon, 2000).  It 
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observes that the computational capacity of 
reconfigurable hardware grows at a rate roughly twice 
that of general-purpose CPUs.   

We have provided many examples of where FPGAs 
differ from traditional CPUs.  As far as hardware goes, 
the one that makes them very attractive is simple.  CPUs 
essentially do one one thing at a time at very high clock 
speeds whereas FPGAs can do a multitude of things at a 
slower clock speed.  The traditional CPU in use today 
follows the von Neumann sequential processing 
paradigm.  That is, instructions are fetched and executed 
and results are stored in a continuous sequential fashion.  
The fact that memory is separate from the processing 
unit in this architecture leads to a condition known as the 
von Neumann bottleneck; these are the delays from 
reading and writing to main memory.  The addition of 
cache memory has been promoted over the years to 
alleviate some of this forced-wait, spin-idle time. 

FPGAs overcome these sequential barriers by 
allowing circuit designers to operate both in space and 
time.  Algorithms are laid out in space on 
reprogrammable hardware.  Instruction-level parallelism 
is the most obvious form of speedup resulting from this 
capability.  Multiple copies of the same computation can 
be carried out simultaneously by unrolling or strip-
mining the heavily used loops in an algorithm.  
Incredibly deep pipelines can also be formed for more 
step-wise operations. 

Speedup through other means is also possible on 
large FPGA fabric.  Separate tasks can be executed 
concurrently with no data or time dependencies.  There is 
also the potential for reduced latency as potentially large 
data structures can be laid out and maintained in lookup 
tables in FPGA fabric vice tiered memory systems.  Stall 
cycles are removed with the von Neumann bottleneck 
essentially disappearing. 

 
4.2 Programming 
 

Programming represents a significant barrier to the 
use of FPGA technology.  Programming a FPGA is 
fundamentally different than general-purpose processors.  
Certainly with current programming, not considering 
parallelism for now, high-level languages have been a 
tremendous help in quickly fielding software systems 
that are portable and efficient.  As stated earlier, some of 
this speedy development can get bogged down in an 
attempt to squeeze every last bit of performance from the 
CPUs. 

FPGAs have a somewhat complex development 
environment.  Programming FPGAs in a traditional sense 
is done with a Hardware Description Language (HDL).  
These languages tend to favor digital designers as they 
are used to define circuit connections.  Two of the most 
prevalent languages in use are VHSIC Hardware 
Description Language (VHDL) and Verilog.  VHDL has 
a similar look and feel of the Ada programming language 

and is widely used in DOD-related efforts.  Verilog has the 
look and feel of the C programming language.  Both 
languages have loyal followings with ample arguments for 
and against both approaches.  A small piece of example 
VHDL code is given in Figure 3. 

 
-- sqrt8.vhdl  unsigned integer sqrt 8-bits 
computing unsigned integer 4-bits 
--    sqrt(00000100) = 0010   sqrt(4)=2 
--    sqrt(01000000) = 1000   sqrt(64)=8 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
architecture circuits of Sm is 
  signal t011, t111, t010, t001, t100, td : 
std_logic; 
begin  -- circuits of Sm 
  t011 <= (not x) and y and b; 
  t111 <= x and y and b; 
  t010 <= (not x) and y and (not b); 
  t001 <= (not x) and (not y) and b; 
  t100 <= x and (not y) and (not b); 
  bo   <= t011 or t111 or t010 or t001; 
  td   <= t100 or t001 or t010 or t111; 
  d    <= td when u=’1’ else x;   
end architecture circuits;  -- of Sm 

 
Figure 3: Example VHDL code. 

 
 The FPGA development cycle is also different from 
that found in traditional software engineering for generic 
processors.  First, parallel algorithms require a slightly 
different focus from designers who are used to thinking 
sequentially.  Even current parallel programming 
paradigms, such as message-passing, do not map well to 
the underlying structure of the language.  Rather, for those 
familiar with parallel models, it is similar to the Parallel 
Random Access Machine (PRAM) or the implied Single 
Instruction Multiple Data (SIMD) model (JaJa, 1992).  
That is, all processors are executing the same instruction 
during the same time slice but using potentially different 
data streams.   
 Once algorithms are developed, they are usually tested 
in a VHDL simulator with a wide range of test bench 
examples.  Simulators are vital for HDL to test for 
correctness.  Code must then be synthesized for the FPGA.  
There are cases where code will fail this step.  For 
example, the test beds usually contain a clock to mimic the 
hardware clock on the FPGA.  Code with a clock will fail 
to synthesize as this cannot be duplicated in hardware.  
Further, if the user provides various constraints that cannot 
be met the code may also fail to synthesize.  Synthesis and 
the place-and-route step involve heuristics as the problem 
is a global optimization problem in how best to use the 
underlying fabric.  Code that is “too big” may also fail 
these steps as the number of logic cells can be insufficient. 
 In order to simplify the overall software design 
process for FPGAs, several vendors are coming out with 
solutions that are geared more for non-hardware experts.  
During our course of investigating the applicability of 
FPGAs to computational science, we will be analyzing 
three different programming methodologies put forward by 



leading FPGA vendors.  Of course for core floating-point 
or integer applications the requisite amount of time to 
develop VHDL solutions will be investigated.  Part of 
this effort, however, is to judge how higher level 
approaches to hardware descriptions might make the use 
of FPGA technology more attractive to computational 
scientists who either have no desire or lack the time to 
field full-scale VHDL solutions. 
 The first is from Celoxica and is called Handel-C.  
Handel-C is a C-like language that follows the ANSI-C 
syntax and semantics with extensions and restrictions to 
specify hardware design.  It is designed to produce 
efficient hardware, provides for synchronization, and 
allows one to use arbitrary word widths.  Key to the 
Handel-C approach is the par statement that expresses 
what should happen in parallel.  Figure 4 shows example 
code with the serial, 4-cycle block show in (a) as 
compared to the same code in (b) that can execute in 
parallel in 1 cycle using the par construct. 
 
// 4 clock cycles 
   { 
   i = 0; 
   a = 1; 
   b = 23; 
   c = 99; 
   } 

// 1 clock cycle 
par { 
   i = 0; 
   a = 1; 
   b = 23; 
   c = 99; 
   } 

(a) Standard C syntax 
serial code. 

(b) Handel-C code 
representing a parallel 
region. 

 
Figure 4: Standard C serial code versus Handel-C 

parallel constructs. 
 
 The second development environment we will be 
researching will be DIMEtalk from Nallatech.  DIME-C 
is a part of this package and is a C to VHDL function 
generator.  This is an interesting design approach as most 
of the functionality of C can be used to generate libraries 
that are then tied together using a graphics-based design 
flow tool.   
 Finally, we will be looking at tools developed by 
Stone Ridge Technology that are also attempting to 
address FPGA use at the compiler and library levels.  
The individuals who formed this company have a 
computational science background and hence understand 
the software development methods and challenges for 
large-scale DOD applications.  These initiatives are 
rather new and consist of a compiler collection and 
domain libraries that implement common 
computationally intensive algorithms and enhanced 
versions of third party applications. 
 Currently it is unclear what the ideal path to 
performance will look like in the FPGA high-level 
software world.  It is quite possible that there is no ideal 
solution but rather situations that are application and 

developer dependent.  It is also possible that the best 
solution will be a mix of these approaches.   

5. RECONFIGURABLE COMPUTING IN 
PRACTICE 

 
 For all but the most simplistic circuit designs, FPGAs 
will act together with traditional CPUs to form a 
heterogeneous, reconfigurable architecture for the next 
generation of parallel computers.  The most compute-
intensive segments of software will be offloaded to FPGAs 
for hardware acceleration.   
 
5.1 Hardware systems 
 
 Desktop solutions with FPGAs are already available 
for a host of problems.  The traditional areas where 
custom-built FPGA hardware accelerated computing is 
making an impact include signal and image processing, 
electromagnetics, and encryption.  Large-scale speedup 
can already be seen on applications running on single 
FPGAs in these cases.  A factor of 100 speedup is common 
in the literature.  
 However, there is no reason to stop at single FPGAs 
to solve difficult problems.  Recently there has been a push 
to extend the viability of FPGA-based solutions into the 
parallel world.  HPC systems with FPGAs are being 
fielded in the DOD High Performance Computing 
Modernization Program.  Several Cray XD1 systems are 
available with clusters of over 100 FPGA processors.  
These machines will be used by the authors to investigate 
the use of coupled commodity clusters and FPGA devices 
in a parallel system.     
 According to Cray, one of the three main obstacles to 
the adoption of reconfigurable computing is PCI bus 
bottlenecks or data starvation to the FPGA (the other two 
being job scheduling and programmability) (Cray Inc., 
2005).  Indeed data starvation is a problem in some FPGA 
cases where traditional bus speeds through PCI 
connections are lacking.  Cray has implemented a 
proprietary system known as RapidArray to connect the 
compute processors to the FPGAs over high bandwidth, 
low-latency links.  In the personal computer or workstation 
market, vendors are moving to PCI-Express solutions for 
FPGAs.  Currently the majority of the boards offer PCI-X 
solutions to improve bandwidth between FPGA and 
processor.  This is an intermediate step prior to full PCI-
Express support. 
 
5.2 Application Areas 
 

Whether it be one FPGA or hundreds connected in a 
cluster, it is safe to say that all but the simplest 
applications will involve some combination of generic 
processors operating in conjunction with FPGA hardware.  
Approaching computation-intensive programs for 
optimization is already handled in this fashion.  Here, 



researchers generally look for a 90/10 rule in their code 
that is surprisingly common across domains.  Often 
roughly 90% of the total execution time of a piece of 
software resides in only 10% or less of the total source 
lines of code.  This 90/10 offloading rule will be the 
fastest way to identify what code segments could 
possibly be shipped to the FPGA for fast execution.  
There should be no shortage of applicable application 
areas. 

Often when first encountering FPGAs researchers 
are hesitant to investigate their use due to the low clock 
speeds associated with the devices.  However, this is 
often misleading, but does provide some insight on what 
application might be appropriate to target for FPGAs.  
For example, consider a CPU at 4 GHz versus an FPGA 
clocking at 400 MHz.  Assume that the CPU takes one 
cycle to produce an interesting result.  One can easily see 
that it would take an array of 10 Processing Elements 
(PEs) in the FPGA fabric to match the performance of 
the CPU.  Of course, it usually takes well over one cycle 
for a CPU to produce an interesting result.  It must 
serially read the data from memory and write any results 
back.  Other overheads such as the incrementing of 
induction variables on loops and associated loop 
overhead for branch and bound easily add to the clock 
quantum to produce interesting results.  Overall, with 
today’s technology, a 10 PE rule of thumb helps to 
determine viable FPGA applications. 

To evaluate the use of FPGAs to the Army, we are 
focusing on two distinct application areas.  The first 
deals with integer and bit-based computing technology.  
Here we will be targeting encryption algorithms, 
steganalysis, and data mining for intrusion monitoring 
and protection.  The ability to hide and encode messages 
using standard encryption and ciphers is a major problem 
for Army intelligence.  Furthermore, the sheer size of 
data collected on network traffic sensors is 
overwhelming.  The task of mining this data for potential 
computer security breach is extremely time-consuming 
using conventional computing. 

The power of FPGAs to directly tackle these 
problems with incredible speedup is a major drawing 
force.  We will be working with the Army Research 
Laboratory’s (ARL) Center for Intrusion Monitoring and 
Protection (CIMP) to identify applications for studying 
FPGA utility in data mining.  We have already identified 
the “Blowfish” encryption code as a first-cut in 
analyzing FPGAs in single and parallel mode against 
standard implementations of this algorithm on 
commodity chips.  We will move into steganalysis upon 
completion of these initial efforts. 

The second main focus area will be on floating-point 
intensive applications.  We are currently targeting a 
Classical or Quantum Monte Carlo (QMC) algorithm to 
implement in hardware to compare against computers 
having reported high FLOP-rate capabilities.  QMC is a 
good candidate for several reasons.  First, it is broadly 

representative of scientific computing algorithms.  Second, 
its structure, which allows fine and coarse grain 
parallelization, pipelining, and calculation with integer or 
fixed point data representation makes it a sound fit for 
FPGAs.  Finally, QMC is very time-consuming and can 
easily take advantage of savings from hardware 
acceleration with incredible impact. 

6. CONCLUSION 
 
The HPC community is currently facing a capability 

gap that is only going to get worse.  There are numerous 
hardware and software development challenges that lie 
ahead as we attempt to construct larger computer systems 
to focus on computational science applications to key 
Army requirements.  Reconfigurable computing holds the 
promise of a solution, but it will take substantial effort to 
reach maturity.  Within the next three to four years we 
foresee more focus on this methodology with success 
stories coming from the many modeling and simulation 
codes currently running on commodity clusters.   
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